

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 21.04.2020 –

Teacher: Prof. Chiara Saffirio

Assistent: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let V be a Banach space and E a nonempty subset of V such that for any $\xi \in V^*$ there exists a finite constant C_ξ such that

$$\sup_{x \in E} |\xi(x)| \leq C_\xi. \quad (1)$$

Prove that E must be bounded.

*Hint: Consider the map $J : V \rightarrow V^{**}$ defined as*

$$[J(x)](\xi) := \xi(x) \quad \forall x \in V, \xi \in V^*. \quad (2)$$

*Prove that $\|J(x)\|_{V^{**}} = \|x\|$ for any $x \in V$. Use the Uniform Boundedness Principle to show that $J(E)$ is bounded and conclude.*

Exercise 2

Consider (X, Ω) a measurable space (i.e., a set X with a σ -algebra Ω in it), and consider a projection-valued measure with values in \mathcal{H} an Hilbert space. Let $E, F \in \Omega$.

- a Prove that if $E \cap F = \emptyset$ then $\text{Ran } \mu(E) \perp \text{Ran } \mu(F)$.
- b Prove that $\mu(E)\mu(F)$ is an orthogonal projector and that

$$\text{Ran}(\mu(E)\mu(F)) = \text{Ran } \mu(E) \cap \text{Ran } \mu(F). \quad (3)$$

Exercise 3

Let \mathcal{H} be an Hilbert space. Let A be a self-adjoint bounded operator over \mathcal{H} . Let B a bounded operator over \mathcal{H} such that $[A, B] = 0$. Consider a bounded complex-valued measurable function f . Prove that $[f(A), B] = 0$.

Exercise 4

Let \mathcal{H} be an Hilbert space. Let T be a bounded operator over \mathcal{H} . We proved in class that in general $R(T) \leq \|T\|$, where

$$R(T) := \sup_{\lambda \in \sigma(T)} |\lambda|. \quad (4)$$

Exhibit an explicit operator such that $R(T) < \|T\|$.